IMPORTANT NOTICE AND DISCLAIMER

This presentation may contain certain forward-looking statements and forecasts based on uncertainty, since they relate to events and depend on circumstances that will occur in the future and which, by their nature, will have an impact on PCI Biotech’s business, financial condition and results of operations. The terms “anticipates”, “assumes”, “believes”, “can”, “could”, “estimates”, “expects”, “forecasts”, “intends”, “may”, “might”, “plans”, “should”, “projects”, “programmes”, “will”, “would” or, in each case, their negative, or other variations or comparable terminology are used to identify forward-looking statement. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in a forward-looking statement or affect the extent to which a particular projection is realised. Factors that could cause these differences include, but are not limited to, implementation of PCI Biotech’s strategy and its ability to further grow, risks associated with the development and/or approval of PCI Biotech’s products candidates, ongoing clinical trials and expected trial results, the ability to commercialise fimaporfin (Amphinex®), technology changes and new products in PCI Biotech’s potential market and industry, the ability to develop new products and enhance existing products, the impact of competition, changes in general economy and industry conditions and legislative, regulatory and political factors. No assurance can be given that such expectations will prove to have been correct. PCI Biotech disclaims any obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

The reservation is also made that inaccuracies or mistakes may occur in this information given about current status of the Company or its business. Any reliance on the information is at the risk of the reader, and PCI Biotech disclaims any and all liability in this respect.
PCI BIOTECH AT A GLANCE

Unlocking the potential of innovative medicines

- Biopharmaceutical company focusing on development and commercialisation of novel therapies for the treatment of cancer
- Leverages Photochemical Internalisation ('PCI') technology, originating from the Oslo University Hospital – the Radium Hospital
- Platform technology with three programmes targeting an attractive and growing oncology market
- Lead programme, fimaCHEM, is a pivotal phase ready orphan designated (EU & US) first-in-class photochemical internalisation product for treatment of bile duct cancer – a disease without approved drugs
- Listed on Oslo Børs (PCIB)

History and milestones

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Demerger from Photocure, listing on Oslo Axess (2008)</td>
<td>Strategic refocus towards fimaVACC and fimaCHEM</td>
<td>Early promising signs of efficacy in Phase I/II bile duct cancer study with fimaCHEM</td>
<td>NOK 70m rights issue completed</td>
<td>Successful transfer from Oslo Axess to Oslo Børs main list Expected</td>
</tr>
<tr>
<td>Phase I study (first in man) completed, demonstrating safety and promising efficacy of fimaCHEM</td>
<td>First patient treated in bile duct cancer study with fimaCHEM</td>
<td>Orphan drug status in EU</td>
<td>fimaCHEM granted Orphan drug status in bile duct cancer in US</td>
<td>- Safety data for repeated treatment with fimaCHEM</td>
</tr>
<tr>
<td>Focus on fimaVACC amplified, IP generation</td>
<td>First pre-clinical collaboration agreement for fimaNAC</td>
<td>First subject dosed in the Phase I study with fimaVACC</td>
<td>Important commercialisation guidance from regulators</td>
<td>- Initiation of pivotal bile duct cancer study for fimaCHEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Promising initial clinical results for the fimaVACC programme</td>
<td>Ph I fimaVACC study completed</td>
</tr>
</tbody>
</table>

Icon: Unlocking the potential of innovative medicines

Biopharmaceutical company focusing on development and commercialisation of novel therapies for the treatment of cancer

Platform technology with three programmes targeting an attractive and growing oncology market

- Lead programme, fimaCHEM, is a pivotal phase ready orphan designated (EU & US) first-in-class photochemical internalisation product for treatment of bile duct cancer – a disease without approved drugs
- Listed on Oslo Børs (PCIB)

<table>
<thead>
<tr>
<th>Programme</th>
<th>Indications / Therapeutics</th>
<th>Pre-clinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Pivotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>fimaCHEM</td>
<td>Bile duct cancer / gemcitabine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fimaVACC</td>
<td>Therapeutic cancer vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fimaNAC</td>
<td>Nucleic acid therapeutics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: PCI Biotech; Oslo Børs
MANAGEMENT TEAM

Dr. Per Walday – CEO

- CEO since 2008
- Previously Global Head of Project Management at GE Healthcare
- Other experience includes manager positions in Nycomed Imaging/Amersham Health
- Ph.D. Physiology, University of Oslo

Experience

Ronny Skuggedal – CFO

- CFO since 2013
- State Authorised Public Accountant Norway, previously Director at PwC Assurance
- Total of 12 years experience from auditing and advisory services
- MSc. Economics and Business Administration, NHH

Experience

Dr. Anders Høgset, CSO
- CSO since 2001 (deputy CEO 2004-2008)
- Previously Senior Scientist at Radiumhospitalet developing the PCI technology
- Ph.D. Biochemistry, University of Oslo

Dr. Hans Olivecrona, CMO
- CMO since 2017
- Most recently Senior Medical Director at SOBI, responsible for medical affairs and business development
- MD, Ph.D., Karolinska Institutet

Gaël L'Hévéder, CBDO
- CBDO since 2013
- >20 years experience and an extensive network in the international pharmaceutical industry
- MSc. Bioorganic Chemistry, Université Louis Pasteur

Kristin Eivindvik, Project Director
- Project Director since 2009
- Formerly held the position as VP Business Operations at Alertis Medical. Other experience from GE Healthcare
- MSc. Pharmacy, University of Oslo
BOARD OF DIRECTORS

Dr. Hans Peter Bøhn
MD
Chairman
- Chairman since 2016
- 12 years experience from various management positions with Nycomed Imaging
- Other experience includes being a financial analyst, covering life science companies

Prof. Andrew Hughes
Prof. MD, PhD
Board Member
- Strategy Director of the experimental cancer medicine at Manchester Cancer Research Centre, UK
- Broad experience from AstraZeneca, most recently Global Vice President of Early Clinical Development
- Clinical investigator on over 200 clinical trials and leading over 50 research and early development programmes

Dr. Hilde Steineger
PhD
Board Member
- Chief Operating Officer and co-founder NorthSea Therapeutics
- Previous experience includes management positions with BASF / Pronova Biopharma
- Board member of Nordic Nanovector and Strongbridge Biopharma

Dr. Christina Herder
PhD
Board Member
- Executive Vice President at Medivir AB
- Previous experience includes management positions with Modus Therapeutics and SOBI
- Board member of Idogen AB

Dr. Lars Viksmaen
MD
Board Member
- > 25 years broad, international experience from pharma, biotech and medtech industry
- Worked 10 years as a surgeon prior to his executive career
- Previous experience include Merck and GN ReSound
PCI TECHNOLOGY

Enabling drugs to reach intracellular therapeutic targets

Mode of action

CELL SYSTEM

TRIGGERED ENDOSONMAL RELEASE

PCI – the solution to a key challenge for several modalities

Broad application

PCI Biotech

Enabling approved drugs to fulfil unmet local treatment need
Enhancing cellular immune responses important for therapeutic effect
Providing a delivery solution for nucleic acid therapeutics
INVESTMENT HIGHLIGHTS

<table>
<thead>
<tr>
<th>Market</th>
<th>Platform technology with three programmes targeting an attractive and growing oncology market, with a clear path to a high unmet need orphan oncology market for the lead product candidate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead product</td>
<td>Amphinex® is a pivotal phase ready orphan designated (EU & US) first-in-class photochemical internalisation product for treatment of bile duct cancer – a disease without approved drugs</td>
</tr>
<tr>
<td>Clinical results</td>
<td>Promising early signs of tumour response in a first-in-man study published in Lancet Oncology, and in a Phase I study specifically targeting bile duct cancer – encouraging survival data</td>
</tr>
</tbody>
</table>
| Pipeline | **fima Vacc** – a clinical stage vaccination technology with promising cellular immune responses
fima NAC – a preclinical gene therapy delivery solution with established key player collaborations |
| Strategy | Development strategy for **lead candidate** established based on **thorough regulatory discussions** with FDA and EMA – a single randomised pivotal study with **accelerated approval potential** |
| Leadership | Management team, Board of Directors and advisors with **extensive pharmaceutical industry experience** across a range of medical development and commercial areas |
THREE WELL-DEFINED DEVELOPMENT PROGRAMMES

1. **fimaCHEM**
 - PCI may enhance approximately 20% of relevant approved chemotherapies
 - First-in-man study published in Lancet Oncology\(^1\)
 - Promising tumour responses in Phase I in inoperable extrahepatic bile duct cancer
 - Pivotal phase ready, with potential for approval based on interim read
 - Orphan disease with high price potential

2. **fimaVACC**
 - Total sales of cancer vaccines estimated to reach $7.5bn in 2022\(^2\)
 - Expected market growth largely driven by therapeutic vaccine combinations with checkpoint inhibitors
 - Strong preclinical data – ongoing clinical study with promising initial results
 - Aim is to out-license the technology on non-/semi-exclusive basis – opportunity to develop own vaccination products

3. **fimaNAC**
 - Main HURDLE IS DELIVERY into cells
 - Estimated market size of $18bn in 2030\(^3\) (RNAi alone)
 - Strong preclinical data with several RNAi’s
 - Opportunistic collaborative approach
 - Aim is to out-license the technology on non-/semi-exclusive basis

2) GBI Research (2016) Global Cancer Vaccines Market to 2022
3) Research and Markets (2015) RNAi therapeutics market
PCI TECHNOLOGY
► fimaCHEM – mode of action

Cancer cell

Chemotherapeutics

Endocytosis

Release into cytosol

E.g.:
- Cytotoxic antibiotics
 - DNA intercalation, free radical formation, etc.
- Anti-metabolites
 - DNA/RNA synthesis inhibition; DNA damage
- Anti-microtubule agents
 - Cell cycle arrest

Lysosomal breakdown
Bile Duct Cancer

Location and classification

- Often referred to as cholangiocarcinoma
- The cancer cells originates from the cells inside the bile duct (called cholangiocytes)
- Cholangiocarcinoma includes:
 - Intrahepatic tumours (10%)\(^1\)
 - Perihilar tumours (60-70%)\(^1\)
 - Distal tumours (20-30%)\(^1\)
 - Different incidence, pathobiology and management

Perihilar bile duct cancer is the initial target for PCI treatment

1) Bile duct cancer, American Cancer Society, 30 October 2013
Bile Duct Cancer

► Excellent fit between medical need and **fimaCHEM**

Key Points

► Orphan indication, yearly incidence rate of 1-2 per 100,000 in the western world\(^1\) – higher in Asia
► Five-year survival rate of less than 5% and almost 0% when inoperable\(^1\)
► Median survival inoperable: \(\approx\)12 months\(^2\)
► Current management\(^1\)
 - Surgery
 - Only potentially curative treatment
 - Less than ½ are resectable at presentation
 - Stenting
 - **Endoscopic** stenting for palliative biliary drainage
 - Chemotherapy
 - No approved chemotherapy
 - Recommended: gemcitabine and cisplatin

Improvements with fimaCHEM

- Combination therapy with gemcitabine and cisplatin is recommended
- Gemcitabine is significantly enhanced by **fimaCHEM**
- Enhancing systemic therapy locally

- Patients are treated with endoscopic methods (ERCP) for diagnosis and stenting
- Optic fibre and illumination easily included in the ERCP procedure

- Tumours tend to block the bile duct
- Liver function is often affected
- Biliary drainage is key for patient treatment and survival

- Preclinical and clinical data supports the notion of potential abscopal effects with **fimaCHEM**
- May be ideal for combination with checkpoint inhibitors
INOPERABLE EXTRAHEPATIC BILE DUCT CANCER

► An underserved patient population

- No approved medical treatment
- Combination therapy with gemcitabine and cisplatin recommended

Presentation: Pain, jaundice, abnormal liver function tests, abnormality on imaging

Workup: Biliary drainage (stenting)

Treatment:
- Gemcitabine/cisplatin combination therapy
- Fluoropyrimidine-based treatment / Clinical trial
- Best supportive care

Phase I treatment
Intended pivotal phase treatment
Bile Duct Cancer – Clinical Phase I/II Study

- **Encouraging early signs of efficacy in Phase I dose escalation**

- **Interim average overall survival (OS) of all 16 patients in Phase I was 17.4 months per March 2018, with 25% of the patients still being alive.** Median OS ended at 14.4 months.

- **Best overall response (all radiologically evaluable patients) – almost all showed tumour reduction**

Percentage change in overall tumour size

- Cohort 1 (n=2)
- Cohort 2 (n=2)
- Cohort 3 (n=3)
- Cohort 4 (n=4)

Source: PCI Biotech data
Note: 1) Cohort 1 and 2: Local read; Cohort 3 and 4: Central read
Bile Duct Cancer – Phase I Extension Study

► Repeating the fimaCHEM treatment with the aim to further enhance efficacy

fimaCHEM
A three step treatment procedure

1. Intravenous injection of fimaporfin
2. Intravenous administration of gemcitabine
3. Endoscopic laser light application

4 days 3±1 hrs

► Exploring safety of repeating the fimaCHEM treatment in an extension to Phase I, which may allow for repeated treatment in a potential pivotal Phase II study

► The study is progressing according to plan and done in parallel with other preparation for the next phase

fimaCHEM 1

⃝ fimaporfin
⃝ gemcitabine + light
⃝ gemcitabine + cisplatin

4 days 7-21 days C 1 (21 days) C 2 C 3 C 4 4 days C 5 (up to 8 cycles (C) in total)

fimaCHEM 2
COMPETITIVE LANDSCAPE

- A limited pipeline targeting different inoperable cholangiocarcinoma (CCA) indications

Estimated number of competitor products in development in different CCA indications

<table>
<thead>
<tr>
<th>Target</th>
<th>Phase I / II</th>
<th>Pivotal Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First line</td>
<td>Second line</td>
</tr>
<tr>
<td>All CCA</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>iCCA¹ only</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>eCCA² only</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Phase I are often “basket studies”, where CCA may be one of several indications
- Several CCA studies are Investigator initiated / sponsored by academia
- Only one pharmaceutical treatment – fimaCHEM – offers a local boost in the bile duct
- Localised non-specific treatments are on the market (RFA⁴ and radiation), but with limited documented benefit

Source: Internal PCI Biotech analysis
1) Intrahepatic cholangiocarcinoma
2) Extrahepatic cholangiocarcinoma – the target population for fimaChem
3) Announced that a pivotal study will be initiated in 2018 (also included under Phase I/II)
4) Radiofrequency ablation
BILE DUCT CANCER

A sizeable orphan market potential

Immediate target market is as first line treatment
- Incidence is close to 15,000 across Europe and the US
- Immediate target is inoperable patients with local disease
- Approximately 3,000 assumed to be eligible for fimaCHEM
- Possible upside in distal and more advanced metastatic disease
- Higher incidences in Asia

Attractive price potential
- Lack of approved medicinal treatment options
- Diseases with <10,000 in US support annual pricing >$100,000\(^1\)

Potential significant majority share of the market
- Anticipated benefits
 - No competing marketable treatment alternatives
 - Greater efficacy due to local chemotherapy boost
 - Easy light access through established standard procedures

*Source; Khan et al., Lancet 2005; 366:1303
Gatta et al., Eur J Cancer 2011; 47:2493
Bragazzi et al., Transl Gastrointest Cancer 2012; 1:21
BILI DUCT CANCER

▶ Status and strategy going forward

▶ **Orphan designation**
 - Granted in both the US and EU, recognising the medical need and potential therapeutic benefits

▶ **Phase I dose-escalation completed with good tolerability and promising early signs of efficacy**
 - Tumour shrinkage in almost all radiologically evaluable patients
 - Encouraging interim overall survival data

▶ **Fastest way to market determined through regulatory interactions with authorities**
 - Single randomised pivotal study with potential for accelerated / conditional approval based on interim analysis

▶ **Preparations for pivotal phase progressing towards initiation 2H 2018**
 - Full study design to be announced upon completion of clinical advisory interactions
PCI Technology

fimaVacc – mode of action

Dendritic cell
- MHC I
- MHC II
- Proteasomes
- Endosome
- Vaccine antigen

Vaccine
- MHC Class I
- MHC Class II
- Generate more disease specific cytotoxic T-cells
- Attack cancer and virus infected cells more efficiently
- Antibodies and helper T-cells

fimaVacc – strong potential

- Opportunity to play a key role in second generation immunotherapy
- Unique mode of action
 - Indication of CTL-induction by MHC class I antigen presentation in dendritic cells and macrophages
- Broad applicability
 - Peptide and protein antigens
 - Prophylactic & therapeutic vaccination
- Excellent stability
 - Few logistical challenges (stable at room temperature in solution and can be autoclaved)
- Important recent IP generation
fima VACC STRONGLY ENHANCES VACCINATION EFFECTS

- Impressive effects with clinically relevant HPV therapeutic vaccine in mice

Cytotoxic (CD8) T-cells

- Most important immune cells to fight tumours
- Difficult to induce with vaccination
- fima VACC strongly enhances the ability of vaccines to induce CD8 T-cells:
 - >20 and >40 times enhancement seen in spleen and blood cells, respectively
 - Generation of immunological memory

Source: PCI Biotech data
Therapeutic Vaccination in Tumour Model

- *fimaVacc* induces cytotoxic T-cells that infiltrate tumours

Therapeutic fimaVacc vaccination with OVA in animal tumour model (B16-OVA melanoma/OT-1)

- **Tumour volume at different time points after inoculation**
 - (mean values; n=5/group)

- **Tumour infiltration of CD8⁺ T-cells**

Source: PCI Biotech data

1) PCI = fimaVACC
PROGRESSING CLINICAL TRANSLATION
► Phase I study in healthy volunteers

► Overall objective:
 - Determine the safety, tolerability and immune response of fimavacc in healthy subjects

► Study consists of three parts:
 1. Tolerability of intradermal fimaporfin, adjuvant and light (without vaccine)
 2. fimavacc vaccination: dose finding (fimaporfin and light) and cohort expansion
 3. Optimisation of the fimavacc regimen

► Status:
 - More than 90 subjects have so far been treated
 - Part 1 is completed
 - Part 2 is completed
 • Initial data suggest overall T-cell enhancement at tolerable doses, as well as early responses and high response rates
 • Vast number of study samples available – near-term focus on characterisation of the immune response
 - Part 3 TBD
 - Expected study completion: 2H 2018

Vaccination features:

- Enhanced T-cell blood levels
- High T-cell response rates
- Early T-cell responses

Patented disposable “band-aid-like” device for user-friendly illumination of the vaccination site
Nucleic acid therapeutic

Cancer cell

- Endocytosis
- Release into cytosol
- Knockdown of gene expression
- Therapeutic protein production
- Repair of genetic defects

E.g.:

- siRNA
- miRNA
- mRNA
- DNA
- CRISPR

PCI TECHNOLOGY

fimaNAc – mode of action

- Lysosomal breakdown
ENHANCING mRNA DELIVERY

Strongly increased GFP synthesis with increasing light doses

fimaNAc with polyethylenimine (PEI) vehicle

Control: PEI w/o fimaNAc PEI w/ fimaNAc

Cell survival

% surviving cells

Ctr. PEI/mRNA

Control fimaNAc

Strongly increased GFP synthesis with increasing light doses.
VERSATILITY OF fima\textit{NA}c

- Delivery of many types of nucleic acid with many different vehicles \textit{in vitro}

<table>
<thead>
<tr>
<th>Main bottleneck in the field is delivery</th>
<th>Nucleic acids successfully delivered by fima\textit{NA}c</th>
</tr>
</thead>
<tbody>
<tr>
<td>► fima\textit{NA}c can deliver many types nucleic acids</td>
<td>Type of nucleic acid</td>
</tr>
<tr>
<td>► Enhancement by fima\textit{NA}c is best under conditions favourable for vehicle safety</td>
<td>Plasmids</td>
</tr>
<tr>
<td>– Low ratio of vehicle to nucleic acid</td>
<td>siRNA</td>
</tr>
<tr>
<td>– Low concentration of vehicle/nucleic acid complex</td>
<td>PNA (peptide nucleic acids)</td>
</tr>
<tr>
<td>► Especially advantageous \textit{in vivo}</td>
<td>mRNA</td>
</tr>
<tr>
<td>– Difficult to achieve a high concentration of vehicle/nucleic acid complex in target cells</td>
<td>Adenoviral vectors</td>
</tr>
<tr>
<td>– Toxicity may limit the amount of vehicle used</td>
<td>AAV vector</td>
</tr>
</tbody>
</table>

Pursuing collaboration and partnering opportunities with major players at minimal internal resources
Research Collaborations

- **Six active collaborations within nucleic acid therapeutics and vaccination**

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Details</th>
</tr>
</thead>
</table>
| RXi | - Collaboration initiated 2Q 2015
- Listed on Nasdaq, developing innovative therapeutic siRNA
- Collaboration expanded to immuno-oncology following RXi’s MirImmune acquisition |
| Top-10 large pharma | - Collaboration initiated 3Q 2015
- A global leader in nucleic acid therapeutics
- Collaboration expanded to include *in vivo* studies and duration to end 2Q’18 |
| Biontech | - Collaboration initiated 3Q 2016
- German biotech company developing individualised cancer immunotherapies
- Clinical programmes in melanoma, head & neck, breast, ovarian and pancreatic cancer |
| Ethernat | - Collaboration initiated 4Q 2016
- Belgian biotech with proprietary TriMix platform programming dendritic cells
- Clinical programmes in melanoma and triple negative breast cancer |
| Immunovaccine | - Collaboration initiated 2Q 2018
- A listed Canadian clinical stage immunotherapy biotech
- Multiple clinical-stage programs in cancer and infectious diseases |
| Ultimovacs | - Collaboration initiated 1Q 2016
- Norwegian immunotherapy company
- Therapeutic cancer vaccine against human telomerase |
KEY MILESTONES

- **2H 2018** - **fimaCHEM**: Safety of repeated treatment
- **2H 2018** - **fimaCHEM**: Initiation of pivotal bile duct cancer study
- **2H 2018** - **fimaVACC**: Phase I in healthy volunteers completed

COMMERCIALISATION CONSIDERATIONS

- **Clinical trials and results**
 - Pivotal phase ready orphan designated (EU & US) first-in-class product candidate for treatment of bile duct cancer – a disease without approved drugs
 - Promising early signs of tumour response and encouraging survival data

- **Strategy and market**
 - **fimaCHEM** targeting an attractive and growing oncology market, with a clear path to a high unmet need orphan oncology market
 - Development strategy established based on thorough regulatory discussions with FDA and EMA – a single randomised pivotal study with accelerated approval potential
GOOD PROGRESS AND EXCITING OUTLOOKS

fimaCHEM

Progressing development in bile duct cancer
- Encouraging tumour response and emerging survival data from Phase I
- Fastest way to market determined through regulatory interactions with authorities
- Preparations for pivotal phase progressing towards initiation in second half of 2018

fimaVACC

Clinical validation of the vaccination technology
- Initial results suggest overall T-cell enhancement at tolerable doses, as well as early responses and high response rates
- Near-term focus on characterisation of the immune response

fimaNAc

Progressing the research collaborations
- Five active research collaborations with key players in the nucleic acid therapeutics field
Recent Key Publications

<table>
<thead>
<tr>
<th>Programme</th>
<th>Publication</th>
<th>Brief summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>fimaCHEM</td>
<td>Disulfonated tetraphenyl chlorin (TPCS2a)-induced photochemical internalisation of bleomycin in patients with solid malignancies: A first-in-man phase I dose escalation clinical trial. Ahmed Sultan et al. Lancet Oncology 17 (2016), 1217-1229</td>
<td>In this clinical phase I study PCI Biotech’s proprietary photosensitiser fimaporfin was given at escalating doses in combination with the cytotoxic drug bleomycin to 22 patients with advanced and recurrent cancer. The treatment was found safe and tolerable, and significant anti-tumour effects were seen at all dose levels in this patient population with aggressive cutaneous and sub-cutaneous tumours.</td>
</tr>
<tr>
<td>fimaCHEM</td>
<td>Photochemical internalisation for solid malignancies. Steen Madsen Comment. Lancet Oncology 17(2016),1173-1174</td>
<td>The results of this phase 1 clinical study are intriguing because they suggest that photochemical internalisation might have a role in the treatment of early lesions and palliation of advanced disease.</td>
</tr>
<tr>
<td>fimaVACC</td>
<td>Photochemical internalization of peptide antigens provides a novel strategy to realize therapeutic cancer vaccination. Markus Haug et al. Frontiers in Immunology 9 (2018)</td>
<td>This article shows that fimaVacc can strongly enhance vaccination effects also with peptide vaccines and with cancer antigens. The article also describes the mechanism of action for fimaVacc in such vaccination.</td>
</tr>
<tr>
<td>fimaVACC</td>
<td>Photosensitisation facilitates cross-priming of adjuvant-free protein vaccines and stimulation of tumour-suppressing CD8 T cells. Monika Håkerud et al. Journal of Controlled Release 198 (2015), 10–17</td>
<td>The fimaVACC technology enables access of a protein vaccine to MHC class-I-restricted antigen presentation, with strong CD8+ T-cell responses preventing tumour growth in a melanoma model.</td>
</tr>
<tr>
<td>fimaNAC</td>
<td>Light-induced gene expression using messenger RNA molecules. Sigurd Bøe et al. Oligonucleotides 20 (2010),1-6</td>
<td>Study to developed a site-specific delivery strategy for mRNA molecules through the use of fimaNAC. The main benefit of the strategy proposed is the possibility for protein production from the delivered mRNA in a way that is controllable in a time- and site-specific manner.</td>
</tr>
</tbody>
</table>