Important notice and disclaimer

This presentation may contain certain forward-looking statements and forecasts based on uncertainty, since they relate to events and depend on circumstances that will occur in the future and which, by their nature, will have an impact on PCI Biotech’s business, financial condition and results of operations. The terms “anticipates”, “assumes”, “believes”, “can”, “could”, “estimates”, “expects”, “forecasts”, “intends”, “may”, “might”, “plans”, “should”, “projects”, “programmes”, “will”, “would” or, in each case, their negative, or other variations or comparable terminology are used to identify forward-looking statement. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in a forward-looking statement or affect the extent to which a particular projection is realised. Factors that could cause these differences include, but are not limited to, implementation of PCI Biotech’s strategy and its ability to further grow, risks associated with the development and/or approval of PCI Biotech’s products candidates, ongoing clinical trials and expected trial results, the ability to commercialise fimaporfin (Amphinex®), technology changes and new products in PC Biotech’s potential market and industry, the ability to develop new products and enhance existing products, the impact of competition, changes in general economy and industry conditions and legislative, regulatory and political factors.

No assurance can be given that such expectations will prove to have been correct. PCI Biotech disclaims any obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.
PCI BIOTECH AT A GLANCE

► Unlocking the potential of innovative medicines

► A listed (PCIB:NO) cancer-focused biotech company
► Photochemical internalisation (“PCI”) technology, originating from the Norwegian Radium Hospital
► Clinical programmes
 - **fimaChem** – fimaporfin (Amphinex®) for the orphan indication inoperable bile duct cancer, Phase I completed
 - **fimaVacc** – Vaccination technology that provides strongly enhanced cellular immune responses, Phase I ongoing
► Pre-clinical programme
 - **fimaNac** – Efficient intracellular delivery of nucleic acid therapeutics, with four active research collaborations

PCI – the solution to a key challenge for several modalities

- **fimaChem**
 - Enabling approved drugs to fulfil unmet local treatment need

- **fimaVacc**
 - Enhancing cellular immune responses important for therapeutic effect

- **fimaNac**
 - Providing a delivery solution for nucleic acid therapeutics
PCI TECHNOLOGY

Enabling drugs to reach intracellular therapeutic targets

CELL SYSTEM

- lysosome
- nucleus
- endosome

therapeutic molecule
- Small molecules (chemotherapeutics – fimChem)
- Antigens (peptides/proteins – fimVac)
- Oligonucleotides (mRNA, RNAi - fimNAc)

TRIGGERED ENDOSONAL RELEASE

- Endosome
- fimaporfin
- Trapped therapeutic molecule

Red or blue light activation of fimaporfin

Therapeutic molecules escaped from endosome

PCI Biotech
CHEMOTHERAPEUTICS

► A cornerstone in current cancer therapy

Chemotherapeutics will remain a CORNERSTONE in cancer treatment for the foreseeable future.

PCI may enhance approximately 20% of relevant approved chemotherapies.

Niche indications may allow for ORPHAN DRUG applications.

► fimaChem may enable approved drugs to fulfil unmet local treatment needs
► First-in-man study published in Lancet Oncology*, with independent expert commentary
► Completed Phase I in bile duct cancer with promising early signs of efficacy
► Opportunity for development in further niche indications

*Lancet Oncology (2016) 17(9): p1217–1229
PCI TECHNOLOGY

► fimaCHEM – mode of action

Cancer cell

Chemotherapeutics

Endocytosis

Lysosomal Breakdown

Release into cytosol

E.g.
- Cytotoxic antibiotics
- Anti-metabolites
- Anti-microtubule agents

DNA intercalation; free radical formation; etc.

DNA /RNA synthesis inhibition; DNA damage

Cell cycle arrest

chemotherapeutic
Often referred to as cholangiocarcinoma

The cancer cells originates from the cells inside the bile duct (called cholangiocytes)

Cholangiocarcinoma includes:

- Intrahepatic tumours (10%*)
- Perihilar tumours (60-70%*)
- Distal tumours (20-30%*)
- Different incidence, pathobiology and management

* Bile duct cancer, Am Cancer Soc, 10/30/2013
Bile Duct Cancer

- The unmet need

- Rare disease, yearly incidence rate of 1-2 per 100,000 in the western world – higher incidences in Asia
- Five-year survival rate of less than 5%, and almost 0% when inoperable – average approx. 12 months survival

- Current management
 - Surgery
 - Only potentially curative treatment
 - Less than ⅓ are resectable at presentation
 - Stenting
 - Endoscopic stenting for palliative biliary drainage
 - Chemotherapy
 - No approved chemotherapy
 - Recommended chemotherapy: gemcitabine and cisplatin

Excellent technology fit with PCI

Targeted illumination is done using standard endoscopic procedure

The active chemotherapy gemcitabine is significantly enhanced by **fimaCHEM**
Bile Duct Cancer

► A sizeable orphan market potential

► Immediate target market is as first line treatment
 ▪ Incidence is close to 15,000 across Europe and the US
 ▪ Immediate target is inoperable patients with primary hilar disease
 ▪ Approximately 3,000 assumed to be eligible for fimaCHEM
 ▪ Possible upside in distal and more advanced metastatic disease
 ▪ Higher incidences in Asia

► Attractive price potential
 ▪ Lack of approved medicinal treatment options
 ▪ Diseases with <10,000 in US support annual pricing >$100,000¹

► Potential significant majority share of the market
 ▪ Anticipated benefits
 – No competing marketable treatment alternatives
 – Greater efficacy due to local chemotherapy boost
 – Easy light access through established standard procedures

¹ LifeSciCapital, OD Market Sector Analysis 2016
Bile Duct Cancer

- A proven technology with excellent fit to standard procedures

fimaCHEM

A three step treatment procedure

1. Intravenous injection of fimaporfin
2. Intravenous administration of gemcitabine
3. Endoscopic laser light application

1. 4 days
2. 3±1 hrs

Potential for retreatment with fimaCHEM at set intervals

- Up to 8 cycles
- fimaporfin + gemcitabine
- gemcitabine + cisplatin
- gemcitabine + cisplatin
- gemcitabine + cisplatin
- 4 days, 7-21 days, 21 days, 21 days
Bile Duct Cancer – Clinical Phase I/II Study

► Early promising signs of durable response in Phase I

► 6 months radiology data from all dose cohorts – local read

<table>
<thead>
<tr>
<th>RECIST*</th>
<th>PD</th>
<th>SD</th>
<th>PR</th>
<th>CR</th>
<th>NA**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort IV***</td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cohort III</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cohort II</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cohort I</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

PD: Progressive disease (>20% growth)
SD: Stable Disease
PR: Partial Response (>30% shrinkage)
CR: Complete Response (no visible tumour)

* Response Evaluation Criteria In Solid Tumours (rules defining when cancer patients improve, stay the same or worsen during treatments)
** Not measurable / Not radiologically evaluable
*** Cohort IV expanded; Four radiologically evaluable patients at 6 months

- The last patient in the Phase I study received **fimaChem** treatment March 2016
- Subjects are in the study for 6 months after PCI treatment and thereafter followed for survival only
- Average overall survival by end March 2017 was 14.5 months, with 25% of patients still being alive
- Commissioned central independent radiological expert RECIST evaluation of Cohort III & IV, as this is an expected regulatory requirement
Bile Duct Cancer – Clinical Phase I/II Study

► Six month radiology data – central read confirms promising early tumour response

► **Cohort III & IV – RECIST classification of patients**

<table>
<thead>
<tr>
<th>RECIST</th>
<th>PD</th>
<th>SD</th>
<th>PR</th>
<th>CR</th>
<th>NA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central read</td>
<td>2**</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

* Not measurable / Not radiologically evaluable
** Progressive disease due to appearance of new lesions

► **Cohort III & IV – response at single lesion level**

<table>
<thead>
<tr>
<th>Measurable lesions</th>
<th>Lesion shrinkage</th>
<th>Stable lesion</th>
<th>Lesion growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>17</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(total number of targets selected across the two independent readers)</td>
<td>(lesion not detectable)</td>
<td>(<20% reduction & <10% increase)</td>
<td>(>10% mass increase)</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(>20% mass reduction)</td>
<td>(<20% reduction & <10% increase)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase I results presented as late-breaking news at United European Gastroenterology Week
Bile Duct Cancer

Status and strategy going forward

► Phase I completed with good tolerability and very promising early signs of efficacy
 ▪ No serious unexpected safety findings and no apparent increase in adverse reactions with increasing doses
 ▪ Very promising early signs of efficacy – significant tumour shrinkage observed radiologically
 ▪ Results verified at central evaluation by study-independent external radiological experts in RECIST
 ▪ Encouraging emerging survival data
 ▪ A Phase I extension is about to be initiated, to determine safety of repeated treatments

► Orphan designation
 ▪ Granted Orphan Drug Designation in EU
 ▪ Open IND in US – Orphan Drug application submitted

► Regulatory interactions with EU and US authorities, to determine fastest way to market
 ▪ Promising signs of efficacy in a life threatening orphan indication without approved treatment alternatives
 ▪ May allow for marketing authorisation based on restricted data, e.g. a pivotal Phase II study
IMMUNOTHERAPY
▶ A new hope for millions of patients

- Total estimated immunotherapy sales of $35bn in 2023*
- More than 100 projects in development**
- Combinations with THERAPEUTIC VACCINES may enhance CPI*** response rates

► fimaVacc enhances cellular immune responses important for therapeutic effects
► Ongoing Phase I study in healthy volunteers for clinical validation
► Aim is to out-license the technology on non-/semi-exclusive basis
► Opportunity to develop own therapeutic vaccination products

* Citi Research “Immunotherapy – the beginning of the end for cancer”. Baum, May 2013
** Clinicaltrials.gov. Therapeutic cancer vaccines, PCIB analysis, August 2016
*** CPI: Checkpoint inhibitors
Dendritic cell

Vaccine

Endocytosis

MHC Class II

Antibodies and helper T-cells

MHC Class I

Generate more disease specific cytotoxic T-cells

Attack cancer and virus-infected cells more efficiently

PCI TECHNOLOGY

► fimaVacc – mode of action

Vaccination antigen

proteasomes

endoosome

nucleus

MHC I

MHC II

PCI Biotech
fima VACC STRONGLY ENHANCES VACCINATION EFFECTS

- Impressive effects with clinically relevant HPV therapeutic vaccine in mice

Cytotoxic (CD8) T-cells

- Most important immune cells to fight tumours
- Difficult to induce with vaccination
- fima VACC strongly enhances the ability of vaccines to induce CD8 T-cells:
 - >20 and >40 times enhancement seen in spleen and blood cells, respectively
 - Generation of immunological memory
THERAPEUTIC VACCINATION IN TUMOUR MODEL

- *fima Vacc* induces cytotoxic T-cells that infiltrate tumours

Therapeutic *fima Vacc* vaccination with OVA in animal tumour model (B16-OVA melanoma/OT-1)

![Graph showing tumour volume at different time points after inoculation](image)

Tumour volume at different time points after inoculation

mean values; n=5/group

- Without vaccination
- Vaccination with tumour cell antigen
- PCI* vaccination with tumour cell antigen

Tumour infiltration of CD8+ T-cells

*PCI = *fima Vacc*
THERAPEUTIC VACCINATION WITH fima VACC

► Opportunity to play a key role in second generation immunotherapy

► Unique mode of action
 – induction of antigen specific cytotoxic T-cells by MHC class I antigen presentation in dendritic cells

► Ease of use
 – fimaporfin mixed with vaccine
 – intradermal vaccination

► Broad applicability
 – peptide and protein antigens
 – particulate antigen formulations
 – prophylactic & therapeutic vaccination

► Excellent stability and cost effective synthesis

► Phase I study in healthy volunteers ongoing
 – first results read-out 2Q 2017

Patented disposable “band-aid-like” device for user-friendly illumination of the vaccination site
NUCLEIC ACID THERAPEUTICS
► A treatment modality with huge potential

Estimated sales of USD 18bn in 2030* (RNAi alone)
mRNA is a hot new field with HIGH DEAL ACTIVITY
Main HURDLE IS DELIVERY into cells

► fimaNAC may provide a delivery solution for many nucleic acid therapy applications
► Opportunistic collaborative approach
► Aim is to out-license the technology on non-/semi-exclusive basis

* Research and Markets “RNAi therapeutics market”. Dec 2015
PCI TECHNOLOGY

fimaNAC – mode of action

Target cell

Nucleic Acid Therapeutics

Endocytosis

Release into cytosol

Lysosomal Breakdown

- siRNA
- miRNA
- mRNA
- DNA
- CRISPR

Knockdown of gene expression
Therapeutic protein production
Repair of genetic defects
ENHANCING mRNA DELIVERY

- Strongly increased GFP synthesis with increasing light doses

fimaNAC with polyethylenimine (PEI) vehicle

<table>
<thead>
<tr>
<th>Time</th>
<th>PEI w/o fimaNAC</th>
<th>PEI w/ fimaNAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 s</td>
<td>1.4%</td>
<td></td>
</tr>
<tr>
<td>30 s</td>
<td>1.2%</td>
<td></td>
</tr>
<tr>
<td>60 s</td>
<td>8.9%</td>
<td></td>
</tr>
<tr>
<td>120 s</td>
<td>45.6%</td>
<td></td>
</tr>
<tr>
<td>240 s</td>
<td>92.4%</td>
<td></td>
</tr>
<tr>
<td>360 s</td>
<td>90.2%</td>
<td></td>
</tr>
</tbody>
</table>

Control: PEI w/o fimaNAC w/ fimaNAC

Cell survival

- 7% positive
- 75% positive

Control

fimaNAC
VERSATILITY OF *fimaNAC*

Delivery of many types of nucleic acid with many different vehicles *in vitro*

- Main bottleneck in the field is delivery
- *fimaNAC* can deliver many types of nucleic acids
- Enhancement by *fimaNAC* is best under conditions favourable for vehicle safety
 - Low ratio of vehicle to nucleic acid
 - Low concentration of vehicle/nucleic acid complex
- Especially advantageous *in vivo*
 - Difficult to achieve a high concentration of vehicle/nucleic acid complex in target cells
 - Toxicity may limit the amount of vehicle used

<table>
<thead>
<tr>
<th>Type of nucleic acid</th>
<th>Delivery vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmids</td>
<td>PEI, cationic peptides, cationic lipids, polylysine ++ Targeting to EGF-R, transferrin-R</td>
</tr>
<tr>
<td>siRNA</td>
<td>PEI, cationic peptides, dendrimers, lipofectamine, DOTAP, nanogels, chitosan ++</td>
</tr>
<tr>
<td>PNA (peptide nucleic acids)</td>
<td>None, cationic amino acids attached</td>
</tr>
<tr>
<td>mRNA</td>
<td>PEI, Protamine</td>
</tr>
<tr>
<td>Adenoviral vectors</td>
<td>None, cationic polymers</td>
</tr>
<tr>
<td>AAV vector</td>
<td>None</td>
</tr>
</tbody>
</table>

Opportunistic approach – pursuing collaboration and partnering opportunities
RESEARCH COLLABORATIONS

Four active collaborations within nucleic acid therapeutics

RXi Pharmaceuticals
- Initiated 2Q 2015
- Listed on Nasdaq
- Innovative therapeutic siRNA
- Clinical programmes in dermatology and ophthalmology
- New focus on immuno-oncology after MirImmune acquisition

Top-10 large pharma
- Initiated 3Q 2015
- A global leader in nucleic acid therapeutics
- Collaborative research funded by partner
- Evaluate synergistic effects between companies’ technologies

BioNTech
- Initiated 3Q 2016
- German biotechnology company developing individualised cancer immunotherapies
- Clinical programmes in melanoma, head & neck, breast, ovarian and pancreatic cancer

eTheRNA
- Initiated 4Q 2016
- Belgian immunotherapy company
- Proprietary TriMix platform programming dendritic cells with synthetic mRNA
- Clinical programmes in melanoma and triple negative breast cancer

Research collaborations aim to evaluate synergies between the fima platform and partner technologies, with the potential for further partnerships
DEVELOPMENT PIPELINE

- Unlocking the true potential of innovative medicines

<table>
<thead>
<tr>
<th>Programme</th>
<th>Therapeutic agents</th>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>fima CHEM</td>
<td>Chemotherapeutics</td>
<td></td>
<td></td>
<td></td>
<td>Phase I in the orphan indication bile duct cancer completed with promising early signs of efficacy</td>
</tr>
<tr>
<td>fima VACC</td>
<td>Therapeutic cancer vaccines</td>
<td></td>
<td></td>
<td></td>
<td>Phase I study ongoing One active R&D collaboration</td>
</tr>
<tr>
<td>fima NAC</td>
<td>Nucleic acid therapeutics</td>
<td></td>
<td></td>
<td></td>
<td>Four active R&D collaborations</td>
</tr>
</tbody>
</table>

An oncology focused company with three well differentiated assets
PCI BIOTECH

Unlocking the potential of innovative medicines

Enquiries

Dr Per Walday
Chief Executive Officer
E: pw@pcibiotech.com
M: +47 917 93 429

Mr Ronny Skuggedal
Chief Financial Officer
E: rs@pcibiotech.com
M: +47 940 05 757